王薇

作者: 时间:2024-10-30 点击数:

教授,硕士生导师。20114月在哈尔滨工业大学获得理学博士学位。20117月至20137月在复旦大学从事博士后研究工作。研究方向为反问题理论与计算,也包括地震波全波形反演、EIT问题、CT不完全数据的图像重构等应用Numer MathSIAM J Imaging SciInverse Problems等有影响力的国际学术期刊上发表SCI论文30余篇。主持国家自然科学基金项目2项(青年基金项目、面上项目),浙江省自然科学基金项目2项(青年基金、一般项目),指导学生发表论文6

主讲课程《数据科学导论》、《数值分析》、《数学建模》

研究方向统计反问题、医学成像、正则化理论与算法

科研项目:

[1]国家自然科学面上基金,非线性反问题多参数正则化方法的理论与计算, 2021.01-2024.12;

[2]国家自然科学青年基金,非范数型多参数正则化方法的反问题理论与计算, 2015.01-2017.12;

[3]浙江省自然科学基金项目, Banach空间反问题多参数正则化方法的理论及计算, 2019.01-2021.12;

[4]浙江省自然科学基金项目, 基于多参数正则化方法的地震波形反演, 2014.01-2016.12.

科研成果:

[1] 金其年,王薇. Banach空间中求解线性反问题的对偶梯度流方法. 中国科学: 数学. 2023,53(10):1377-1396. 通讯作者.

[2] Z. Fu, W. Wang, B. Han, Y. Chen. Two-point Landweber-type method with convex penalty terms for nonsmooth nonlinear inverse problems. IMA Journal of Numerical Analysis. 2023, 43: 1115–1148. 通讯作者.

[3] M. Zhong, W. Wang, S. Tong. An asymptotical regularization with convex constraints for inverse problems. Inverse Problems. 2022, 38: 045007. 通讯作者.

[4] S. Tong, W. Wang, B. Han. Accelerated homotopy perturbation iteration method for a non-smooth nonlinear ill-posed problem. Applied Numerical Mathematics. 2021, 169: 122-145. 通讯作者.

[5] M. Zhong, W. Wang. The two-point gradient methods for nonlinear inverse problems based on Bregman projections. Inverse Problems. 2020,36: 045012.通讯作者.

[6] L. Xu, L. Li, W. Wang and Y. Gao. CT image reconstruction algorithms based on the Hanke Raus parameter choice rule. Inverse Problems in Science and Engineering. 2020, 28(1): 87-103. 通讯作者.

[7] M. Zhong, W. Wang, Q. Jin. Regularization of inverse problems by two-point gradient methods in Banach spaces. Numerische Mathematik. 2019, 143(3):713–747. 通讯作者.

[8] J. Wang, W. Wang, B. Han. An iteration regularizaion method with general convex penalty for nonlinear inverse problems in Banach spaces. J. Comput. Appl. Math. 2019, 361: 472–486. 通讯作者.

联系方式:weiwang@zjxu.edu.cn



地址:浙江省嘉兴市广穹路899号        邮编:314000        E-Mail: skxy@zjxu.edu.cn  

版权所有 Copyright(C)太阳成城集团(CHN·VIP认证)官方网站-Suncitygroup